Complete solution of the Schrödinger equation of the complex manifold $C P^{2}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 367049
(http://iopscience.iop.org/0305-4470/36/25/310)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.103
The article was downloaded on 02/06/2010 at 15:42

Please note that terms and conditions apply.

Complete solution of the Schrödinger equation of the complex manifold $C P^{2}$

A J Macfarlane
Centre for Mathematical Sciences, DAMTP, Wilberforce Road, Cambridge CB3 0WA, UK
E-mail: a.j.macfarlane@damtp.cam.ac.uk

Received 4 April 2003
Published 12 June 2003
Online at stacks.iop.org/JPhysA/36/7049

Abstract

Passing from the $C P^{2}$ Lagrangian in Kähler form, to the Hamiltonian in terms of polar coordinates, this paper gives the complete set of solutions of the corresponding Schrödinger equation in a manner that makes fully explicit the $S U(3)$ description of the energy eigenspaces. The solutions of the self-adjoint equation for the radial coordinates are derived most easily directly but also related to Jacobi polynomials.

PACS numbers: 03.65.Ge, 02.30.Ik, 02.40.Tt

1. Introduction

In this paper we give the complete set of solutions of the Schrödinger equation on the complex Riemannian manifold $C P^{2}$, and describe in detail how the energy eigenspaces carry the irreducible representations (irreps),

$$
\begin{equation*}
(\lambda, \lambda) \quad \lambda \in\{0,1,2, \ldots\} \tag{1}
\end{equation*}
$$

in standard highest weight notation, of the nonlinearly realized $S U(3)$ symmetry of the manifold.

We believe this to be of interest in its own right, but also as seen against the background of the enduring interest of $C P^{N}$ manifolds in a variety of areas of theoretical physics. We next indicate briefly some aspects of this interest.

Two-dimensional $C P^{N}$ field theories [1] received attention as toy models that offer a view, in a simpler context, of various aspects of Yang-Mills theories in four dimensions. They have also been studied as examples of integrable systems both in the classical and quantum settings. In addition, they are of relevance in relation to Skyrme models. Discussion of $C P^{N}$ models in these contexts can be found in the book of Zakrzewski [2], which contains reference to previous and related work. Interest in such matters is still strong as some recent references indicate [3-5].

In the $C P^{2}$ case, it emerged some time ago that $C P^{2}$ can be regarded as a gravitational instanton [6] or alternatively as a gravitational plus electromagnetic instanton [7, 8]. The continued relevance of $C P^{N}$ spaces to related studies of Einstein, Einstein Kähler and Einstein Sasaki spaces can be seen in papers written over the years from the days of these early papers. For example, note their widespread occurrence, especially for $N=1,2,3$, within the papers [9-11]. See also [12], which reviews related material, and many other things such as the Kähler nature and Fubini-Study metric of $C P^{N}$, and [13].

The classical dynamics or ordinary quantum mechanics of the $C P^{N}$ models can be regarded as field theory in a $(0+1)$-dimensional spacetime. Their gravitational use belongs to this context, as does the present paper. In particular, we wish to construct the full solution of the Schrödinger equation

$$
\begin{equation*}
H_{q} \Psi=E \Psi \tag{2}
\end{equation*}
$$

of the quantum $C P^{2}$ model. The spectrum of (2) for $C P^{2}$ has been known [14] for a long time, as has the specification (1) of which $S U(3)$ representations feature in the corresponding Hilbert space, and analogous results for all $C P^{N}$. There are, further, general considerations underlying such matters, which can be indicated, following the exposition in [15]; see section 8 for a brief account. (I thank N S Manton for valuable conversations on this topic.) However, there remains the construction of all the eigenstates. We address this problem here for $C P^{2}, C P^{2}=S U(3) / U(2)$. Using notation for isospin and hypercharge- I, I_{3}, Y-familiar from the application of $S U(3)$ to elementary particles, we seek a description of the eigenstates of H_{q} which makes manifest the (I, Y) submultiplet structure of the energy eigenspaces. That this might turn out to be non-trivial can be inferred from the fact that the $C P^{2}$ model involves two complex field variables $K_{i}, i=1,2$, and their canonically conjugate momenta, and that in it the $S U(3)$ symmetry is realized nonlinearly. Setting out from a description of the $C P^{2}$ model that reflects its Kähler structure, we introduce polar coordinates

$$
\begin{equation*}
\left(\bar{K}_{1} K_{1}+\bar{K}_{2} K_{2}\right)^{1 / 2}=r=\tan \chi \quad \psi, \beta, \phi \tag{3}
\end{equation*}
$$

and solve (2) by separation of variables. We do this in a fashion that places the eigenstates in exact correspondence with $S U(3)$ basis states of the type $\left|(\lambda, \lambda) I I_{3} Y\right\rangle$. The isospin factors of the wavefunctions in separated form turn out to be Wigner D-functions, familiar in the quantum theory of angular momentum [16],

$$
\begin{equation*}
D_{m I_{3}}^{I}(\psi, \beta, \phi) \quad m=\frac{1}{2} Y \tag{4}
\end{equation*}
$$

despite the fact, clarified below, that hypercharge does not enter $S U(3)$ on a footing similar to I_{3}. Finally, the solution of the radial equation, with independent variable changed according to $r=\tan \chi$, is seen to be of self-adjoint Sturm-Liouville type. It is very easy to solve it directly. The spectrum and the complete (I, Y) structure of the energy eigenspaces emerge in the process. The radial equation can however also be related explicitly to the equation satisfied by the Jacobi polynomials $P_{(2 I+1), Y}^{n}(\cos 2 \chi)$.

The paper begins by reviewing some facts about $S U(3)$ and about the $C P^{2}$ model as a nonlinear realization of $S U(3)$, obtaining explicit expressions for the generators of $S U(3)$ transformations: these are needed for proof that the quantum numbers that come out of the separation procedure are exactly \mathbf{I}^{2}, I_{3} and Y. The paper then describes the passage from the $C P^{2}$ Lagrangian in Kähler form to the Hamitonian, shown to be essentially the Casimir operator of $S U(3)$, and hence to the Schrödinger equation, in terms of suitably defined polar coordinates. The last three sections describe its solutions and their $S U(3)$ properties.

2. Review of facts about representations of $S U(3)$

The Hermitian generators $X_{i}, i \in\{1, \ldots, 8\}$, of $S U(3)$ satisfy

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=\mathrm{i} f_{i j k} X_{k} \tag{5}
\end{equation*}
$$

where the structure constants are specified by reference to the defining representation def of $S U(3)$ for which $X_{i} \mapsto \frac{1}{2} \lambda_{i}$, where the λ_{i} are a standard set of Gell-Mann matrices such that

$$
\begin{equation*}
\left[\lambda_{i}, \lambda_{j}\right]=2 \mathrm{i} f_{i j k} \lambda_{k} \tag{6}
\end{equation*}
$$

The quadratic Casimir oprator of $S U(3)$ is given by

$$
\begin{equation*}
\mathcal{C}^{(2)}=X_{i} X_{i} \tag{7}
\end{equation*}
$$

In the adjoint representation ad $X_{i} \mapsto F_{i},\left(F_{i}\right)_{j k}=-\mathrm{i} f_{i j k}$, this takes the form

$$
\begin{equation*}
\left(\mathcal{C}^{(2)}\right)_{j k}=f_{p q j} f_{p q k}=3 \delta_{j k} \tag{8}
\end{equation*}
$$

It is well known (for background, see, e.g., [17]) that the irreducible representations (irreps) of $S U(3)$ are classified in highest weight notation by two integers $\lambda \geqslant 0, \mu \geqslant 0$. For the irrep (λ, μ), we have

$$
\begin{align*}
\operatorname{dim}(\lambda, \mu) & =\frac{1}{2}(\lambda+1)(\mu+1)(\lambda+\mu+2) \tag{9}\\
\mathcal{C}^{(2)}(\lambda, \mu) & =\frac{1}{3}\left(\lambda^{2}+\lambda \mu+\mu^{2}+3 \lambda+3 \mu\right) \tag{10}
\end{align*}
$$

For ad $=(1,1),(10)$ gives the eigenvalue 3 , agreeing (8). Also the cubic Casimir operator, for which we do not need an explicit definition, has eigenvalue proportional to

$$
\begin{equation*}
(\lambda-\mu)(2 \lambda+\mu+3)(\lambda+2 \mu+3) \tag{11}
\end{equation*}
$$

for (λ, μ).
It is convenient to use definitions of $S U(3)$ generators in common use in particle physics: operators $I_{ \pm}, I_{3}, Y, U_{ \pm}, V_{ \pm}$which in def are given by

$$
\begin{align*}
& I_{3} \mapsto \frac{1}{2} \lambda_{3} \quad \sqrt{2} I_{ \pm}=\left(\lambda_{1} \pm \mathrm{i} \lambda_{2}\right) \quad Y \mapsto \frac{\sqrt{3}}{2} \lambda_{8} \tag{12}\\
& \sqrt{2} V_{ \pm}=\left(\lambda_{4} \pm \mathrm{i} \lambda_{5}\right) \quad \sqrt{2} U_{ \pm}=\left(\lambda_{6} \pm \mathrm{i} \lambda_{7}\right) .
\end{align*}
$$

Also

$$
\begin{equation*}
\mathbf{I}^{2}=I_{3}^{2}+\frac{1}{2}\left(I_{+} I_{-}+I_{-} I_{+}\right) \tag{13}
\end{equation*}
$$

The states $\left|(\lambda, \mu) ; I I_{3} Y\right\rangle$ of any (λ, μ) can then be labelled by their eigenvalues $I(I+1)$, I_{3}, Y of the commuting set \mathbf{I}^{2}, I_{3}, Y of operators. There is a well-known algorithm (see, e.g., [18] for a simple derivation) for calculating the allowed pairs (I, Y) for states $\left|(\lambda, \mu) ; I I_{3} Y\right\rangle$ of (λ, μ) : for each pair of integers $f \geqslant 0, g \geqslant 0$ such that

$$
\begin{equation*}
0 \leqslant f \leqslant \lambda \quad 0 \leqslant g \leqslant \mu \tag{14}
\end{equation*}
$$

there is exactly one allowed (I, Y) pair given by

$$
\begin{equation*}
f=I+\frac{1}{2} Y+\frac{1}{3}(\lambda-\mu) \quad g=I-\frac{1}{2} Y-\frac{1}{3}(\lambda-\mu) \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
I=\frac{1}{2}(f+g) \quad Y=f-g+\frac{2}{3}(\lambda-\mu) \tag{16}
\end{equation*}
$$

The case $(I, Y)=(0,0)$, the $U(2)$ singlet state, is of interest. Such a state occurs once in (λ, μ) if $\lambda=\mu$ and not at all otherwise. For each allowed (I, Y) pair there are $(2 I+1)$ states $\left|(\lambda, \mu) ; I I_{3} Y\right\rangle$ of (λ, μ) with

$$
\begin{equation*}
-I \leqslant I_{3} \leqslant I \tag{17}
\end{equation*}
$$

and it can be checked that (9) follows.

Below, the subset of irrreps (λ, λ) is of major importance. For it, we have

$$
\begin{align*}
& \operatorname{dim}(\lambda, \lambda)=(\lambda+1)^{3} \tag{18}\\
& \mathcal{C}^{(2)}(\lambda, \lambda)=\lambda(\lambda+2) \tag{19}\\
& \mathcal{C}^{(3)}(\lambda, \lambda)=0 . \tag{20}
\end{align*}
$$

Further, if we take $Y>0$, then with each allowed pair (I, Y) the pair $(I,-Y)$ is also allowed. Since all the allowed values of $\left(I+\frac{1}{2} Y\right)$ are integers given by

$$
\begin{equation*}
0 \leqslant\left(I+\frac{1}{2} Y\right) \leqslant \lambda \tag{21}
\end{equation*}
$$

it is then enough to specify the full set of (I, Y) values for (λ, λ).
Finally, we note that the quadratic Casimir operator of $S U(3)$ is given by

$$
\begin{align*}
\mathcal{C}^{(2)} & =\mathbf{I}^{2}+\frac{3}{4} Y^{2}+\frac{1}{2}\left(U_{+} U_{-}+U_{-} U_{+}+V_{+} V_{-}+V_{-} V_{+}\right) \tag{22}\\
& =I_{3}\left(I_{3}+1\right)+\frac{3}{4} Y(Y+2)+I_{-} I_{+}+U_{-} U_{+}+V_{-} V_{+} . \tag{23}
\end{align*}
$$

The latter form is convenient for finding the eigenvalues of $\mathcal{C}^{(2)}$ by action on states of irreps annihilated by the operators I_{+}, U_{+}, V_{+}, these being the states of highest Y and the highest I_{3} for that value of Y.

3. Review of $C P^{2}$ model

Following well-known lines dating back to the 1970s (see [19-21]), we set out from a threecomponent column vector $Z(K)$ dependent on two complex quantities $K_{i}, i=1,2$, and given by
$Z^{T}=\left(L K_{1}, L K_{2}, L\right) \quad L=L(K)=(1+X)^{-1 / 2} \quad X=\left(\bar{K}_{1} K_{1}+\bar{K}_{2} K_{2}\right)$
so that $Z^{T} Z=1$. This $Z(K)$ transforms under $U \in S U(3)$ according to the law

$$
\begin{equation*}
Z(K) \mapsto Z\left(K^{\prime}\right) \quad \text { where } \quad U Z(K)=Z\left(K^{\prime}\right) V(U, K) \tag{25}
\end{equation*}
$$

Here $V=V(U, K)$ serves to ensure that $Z\left(K^{\prime}\right)_{3}=L\left(K^{\prime}\right)$ can be chosen to be real. We need (25) first for infinitesimal

$$
\begin{equation*}
U=1+\frac{1}{2} \mathrm{i}\left(\sum_{a=1}^{3} \epsilon_{a} \lambda_{a}+\eta \lambda_{8}\right) \tag{26}
\end{equation*}
$$

belonging to the $S U(2) \otimes U(1)$ subgroup corresponding to isospin and hypercharge transformations, and second for

$$
\begin{equation*}
U=1+\frac{1}{2} \mathrm{i}\left(\sum_{\alpha=4}^{7} \epsilon_{\alpha} \lambda_{\alpha}\right) \tag{27}
\end{equation*}
$$

for those $S U(3)$ transformations that lie outside the $S U(2) \otimes U(1)$ subgroup. It is well known that the latter give rise to a nonlinear transformation of the K variables of the form

$$
\begin{equation*}
\delta K_{i}=\frac{1}{2} \mathrm{i}\left[\epsilon_{i}-K_{i}\left(\bar{\epsilon}_{j} K_{j}\right)\right] \tag{28}
\end{equation*}
$$

where $\epsilon_{1}=\epsilon_{4}-\mathrm{i} \epsilon_{5}, \epsilon_{2}=\epsilon_{6}-\mathrm{i} \epsilon_{7}$.
The route from (25) to the $C P^{2}$ Lagrangian is too well known to need review. It yields the result

$$
\begin{equation*}
L=g_{i \bar{k}} \dot{K}_{i} \dot{\bar{K}}_{k} \tag{29}
\end{equation*}
$$

where the $C P^{2}$ metric tensor is

$$
\begin{equation*}
g_{i \bar{k}}=(1+X)^{-1} \delta_{i k}-(1+X)^{-2} \bar{K}_{i} K_{k} \tag{30}
\end{equation*}
$$

in its well-known Kähler form [12]. Proceeding classically at first, we define the canonical momenta $\Pi_{i}, \bar{\Pi}_{i}$, and obtain the Hamiltonian

$$
\begin{equation*}
H=g^{i \bar{k}} \Pi_{i} \bar{\Pi}_{k}=(1+X)[\bar{\Pi} \cdot \Pi+(\Pi \cdot K)(\bar{\Pi} \cdot \bar{K})] \tag{31}
\end{equation*}
$$

Next we apply Noether's theorem to (25). Using transformation data for the variables K_{i} given above, we find expressions for the generators of the infinitesimal transformations of $S U(3)$ to be

$$
\begin{array}{ll}
\mathrm{i} I_{3}=\frac{1}{2}\left(\Pi \tau_{3} K-\bar{\Pi} \tau_{3} \bar{K}\right) & \mathrm{i} Y=\Pi \cdot K-\bar{\Pi} \cdot \bar{K} \\
\mathrm{i} I_{+}=\Pi_{1} K_{2}-\bar{\Pi}_{2} \bar{K}_{1} & \mathrm{i} I_{-}=\Pi_{2} K_{1}-\bar{\Pi}_{1} \bar{K}_{2} \\
\mathrm{i} V_{+}=\Pi_{1}+(\bar{\Pi} \cdot \bar{K}) \bar{K}_{1} & -\mathrm{i} V_{-}=\bar{\Pi}_{1}+(\Pi \cdot K) K_{1} \tag{32}\\
\mathrm{i} U_{+}=\Pi_{2}+(\bar{\Pi} \cdot \bar{K}) \bar{K}_{2} & -\mathrm{i} U_{-}=\bar{\Pi}_{2}+(\Pi \cdot K) K_{2}
\end{array}
$$

These obey the expected Poisson brackets. A direct calculation of the quadratic Casimir operator sets out from (22) and reaches the expected result $\mathcal{C}^{(2)}=H$.

In our quantum mechanical work, we prefer to deal with real variables

$$
\begin{equation*}
K_{1}=K_{4}+\mathrm{i} K_{5} \quad K_{2}=K_{6}+\mathrm{i} K_{7} \tag{33}
\end{equation*}
$$

Using Greek letters α, β etc for indices that take values in the range $4,5,6,7$, we find a result of the form

$$
\begin{equation*}
L=g_{\alpha \beta} \dot{K}_{\alpha} \dot{K}_{\beta} \tag{34}
\end{equation*}
$$

where $g_{\alpha \beta}$ can be calculated from (29) and (33), but, being only an intermediate quantity in our work, is not displayed. Passing hence to the quantum mechanical Hamiltonian H_{q} poses an operator ordering problem when Poisson brackets relations for the canonical variables are replaced by commutation relations. One nice way to bypass these is to consider the supersymmetric extension, see, e.g., [22], of the model involving two Hermitian supercharges. Solving the operator order for these is trivial, since a simple symmetrization makes them Hermitian. Then the standard definition of the Hamiltonian in terms of these supercharges produces a correctly ordered Hamiltonian. Its non-fermionic part is then what we want [22], namely

$$
\begin{equation*}
H_{q}=g^{-1 / 4} \Pi_{\alpha} g^{1 / 2} g^{\alpha \beta} \Pi_{\beta} g^{-1 / 4} \tag{35}
\end{equation*}
$$

where $g=\operatorname{det}\left(g_{\alpha \beta}\right)$. Next we recognize that the scalar product of states in the Hilbert space in which H_{q} acts is given by

$$
\begin{equation*}
(\phi, \psi)=\int g^{1 / 2} \bar{\phi}(K) \psi(K) \prod_{\alpha=4}^{7} \mathrm{~d} K_{\alpha} \tag{36}
\end{equation*}
$$

so that the Hermitian representation

$$
\begin{equation*}
\Pi_{\alpha}=g^{-1 / 4}\left(-\mathrm{i} \partial_{\alpha}\right) g^{1 / 4} \quad \partial_{\alpha}=\frac{\partial}{\partial K_{\alpha}} \tag{37}
\end{equation*}
$$

should be used. This converts (35) into the form

$$
\begin{equation*}
H_{q}=-g^{-1 / 2} \partial_{\alpha} g^{1 / 2} g^{\alpha \beta} \partial_{\beta} \tag{38}
\end{equation*}
$$

which is, of course, a very familiar result. See [23, p 155].

3.1. Comment on the notation in use

The column vector Z given by (24) in a slightly extended formulation [19-21] of the $C P^{2}$ model appears as the third column of the $C P^{2}=S U(3) / U(2)$ coset representative $U(K) \in S(3)$

$$
U(K)=\left(\begin{array}{cc}
J & L K \tag{39}\\
-L \bar{K} & L
\end{array}\right)
$$

If we had elected to employ a coset representative that uses the exponential parametrization, which of course we did not because of its intractibility, we would have written

$$
\begin{equation*}
U(K)=\operatorname{expi}\left(\sum_{\alpha=4}^{7} \lambda_{\alpha} K_{\alpha}\right) \tag{40}
\end{equation*}
$$

making the notation used thereby appear natural. The coset representative (39) actually used differs from this only by some redefinition of its field variables.

4. Polar coordinates and separation of variables for $C P^{\mathbf{2}}$

We define polar coordinates, as in [6], for the $C P^{2}$ model by setting

$$
\begin{array}{ll}
K_{4}=r \cos \frac{1}{2} \beta C_{+} & K_{5}=-r \cos \frac{1}{2} \beta S_{+} \tag{41}\\
K_{6}=r \sin \frac{1}{2} \beta C_{-} & K_{7}=r \sin \frac{1}{2} \beta S_{-}
\end{array}
$$

where $C_{ \pm}=\cos \frac{1}{2}(\phi \pm \psi), S_{ \pm}=\sin \frac{1}{2}(\phi \pm \psi)$. The variable r is such that $0 \leqslant r<\infty$, and for the angular variables we have $0 \leqslant \beta \leqslant \pi, 0 \leqslant \psi \leqslant 4 \pi, 0 \leqslant \phi \leqslant 2 \pi$ [6].

It is easy to write the Lagrangian, (29) and (30), in terms of the real variables K_{α} and hence in terms of polar coordinates (41). We find, as in [6] or equivalently [7, 8],

$$
\left.\begin{array}{rl}
L=\frac{1}{\left(1+r^{2}\right)^{2}} & \dot{r}^{2}
\end{array}\right) \frac{r^{4}}{4\left(1+r^{2}\right)^{2}} \sin ^{2} \beta \dot{\phi}^{2} .
$$

We may read the metric tensor off (42) and hence evaluate the quantum Hamiltonian H_{q} of (38). For the latter purpose it is convenient to define $\chi, 0 \leqslant \chi<\frac{1}{2} \pi$ via $r=\tan \chi$. First, with coordinates r, β, ψ, ϕ, we note

$$
\begin{equation*}
g^{1 / 2} \mathrm{~d} r=\sin ^{3} \chi \cos \chi \sin \beta \mathrm{~d} \chi \tag{43}
\end{equation*}
$$

Next, writing (38) in terms of the polar coordinates of (41), we get

$$
\begin{align*}
H_{q}=- & \frac{1}{\sin ^{3} \chi \cos \chi} \frac{\partial}{\partial \chi} \sin ^{3} \chi \cos \chi \frac{\partial}{\partial \chi}-\frac{4}{\cos ^{2} \chi} \frac{\partial^{2}}{\partial \psi^{2}} \\
& \quad-\frac{4}{\sin ^{2} \chi}\left[\frac{1}{\sin \beta} \frac{\partial}{\partial \beta} \sin \beta \frac{\partial}{\partial \beta}+\frac{1}{\sin ^{2} \beta}\left(\frac{\partial^{2}}{\partial \phi^{2}}-2 \cos \beta \frac{\partial}{\partial \psi} \frac{\partial}{\partial \phi}+\frac{\partial^{2}}{\partial \psi^{2}}\right)\right] . \tag{44}
\end{align*}
$$

To solve the corresponding time-independent Schrödinger equation

$$
\begin{equation*}
H_{q} \Psi=E \Psi \tag{45}
\end{equation*}
$$

we separate variables using

$$
\begin{equation*}
\Psi=T(\chi) D_{m \mu}^{j}(\psi, \beta, \phi) \tag{46}
\end{equation*}
$$

We do this on the basis of the quantum theory of angular momentum [16], or the representation theory of $S U(2)$, since the Wigner D-function of (46) obeys the equation

$$
\begin{gather*}
-\left[\frac{1}{\sin \beta} \frac{\partial}{\partial \beta} \sin \beta \frac{\partial}{\partial \beta}+\frac{1}{\sin ^{2} \beta}\left(\frac{\partial^{2}}{\partial \phi^{2}}-2 \cos \beta \frac{\partial}{\partial \psi} \frac{\partial}{\partial \phi}+\frac{\partial^{2}}{\partial \psi^{2}}\right)\right] D_{m \mu}^{j}(\psi, \beta, \phi) \\
=j(j+1) D_{m \mu}^{j}(\psi, \beta, \phi) \tag{47}
\end{gather*}
$$

Upon writing

$$
\begin{equation*}
D_{m \mu}^{j}(\psi, \beta, \phi)=\mathrm{e}^{\mathrm{i} m \psi} d_{m \mu}^{j}(\beta) \mathrm{e}^{\mathrm{i} \mu \phi} \tag{48}
\end{equation*}
$$

a well-known equation for $d_{m \mu}^{j}(\beta)$ follows by letting $-\mathrm{i} \partial / \partial \psi$ and $-\mathrm{i} \partial / \partial \phi$ act on the corresponding exponential factors. It is to be stressed that (47) is valid for

$$
\begin{equation*}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \quad \text { and } \quad-j \leqslant m \quad \mu \leqslant j \tag{49}
\end{equation*}
$$

It further follows that $T=T_{j m}(\chi)$ obeys the equation

$$
\begin{equation*}
\left[\frac{1}{\sin ^{3} \chi \cos \chi} \frac{\mathrm{~d}}{\mathrm{~d} \chi} \sin ^{3} \chi \cos \chi \frac{\mathrm{~d}}{\mathrm{~d} \chi}-\frac{4 m^{2}}{\cos ^{2} \chi}-\frac{4 j(j+1)}{\sin ^{2} \chi}\right] T=-E T \tag{50}
\end{equation*}
$$

This equation is in self-adjoint form, with weight function $\sin ^{3} \chi \cos \chi$. Thus, if T_{1} and T_{2} are solutions of (50) belonging to distinct energy eigenvalues, their orthogonality relation is

$$
\begin{equation*}
\int_{0}^{\pi} \sin ^{3} \chi \cos \chi T_{1}(\chi) T_{2}(\chi) \mathrm{d} \chi=0 \tag{51}
\end{equation*}
$$

just as (43) would lead one to expect, the factor $\sin \beta$, cf (43), of $g^{1 / 2}$ belonging to the orthogonality relation of the Wigner D-functions.

We obtain the solutions of (48) in the next section. To interpret these in relation to the $S U(3)$ structure of the spectrum of H_{q}, we need to identify the complete commuting set of operators which enter our method of separation of variables, and establish their connection to the labelling of states of the Hilbert space in which H_{q} acts. Towards this end, we return to (32), and use (33), (37) and (41) to write $I_{3}, Y, I_{ \pm}$in terms of χ, β, ψ, ϕ and the corresponding partial derivatives. The $g^{1 / 4}$ factors in (37) do not contribute in this process and no order of operators problem arises, and eventually one finds

$$
\begin{align*}
& I_{3}=-\mathrm{i} \frac{\partial}{\partial \phi} \quad Y=-2 \mathrm{i} \frac{\partial}{\partial \psi} \tag{52}\\
& \mathrm{i} I_{1}=-\sin \phi \frac{\partial}{\partial \beta}+\frac{\cos \phi}{\sin \beta}\left(\frac{\partial}{\partial \psi}-\cos \beta \frac{\partial}{\partial \phi}\right) \tag{53}\\
& \mathrm{i} I_{2}=\cos \phi \frac{\partial}{\partial \beta}+\frac{\sin \phi}{\sin \beta}\left(\frac{\partial}{\partial \psi}-\cos \beta \frac{\partial}{\partial \phi}\right) \tag{54}
\end{align*}
$$

Further, we find

$$
\begin{equation*}
\mathbf{I}^{2}=-\left[\frac{1}{\sin \beta} \frac{\partial}{\partial \beta} \sin \beta \frac{\partial}{\partial \beta}+\frac{1}{\sin ^{2} \beta}\left(\frac{\partial^{2}}{\partial \phi^{2}}-2 \cos \beta \frac{\partial}{\partial \psi} \frac{\partial}{\partial \phi}+\frac{\partial^{2}}{\partial \psi^{2}}\right)\right] \tag{55}
\end{equation*}
$$

Thus we can identify the operator that appears in (47) with the square of the isospin operator (the Casimir operator of the $S U(2)$ subgroup of $S U(3)$). It thus follows that we may rename constants appearing in (46)-(50) according to

$$
\begin{equation*}
m=\frac{1}{2} Y \quad \mu=I_{3} \quad j=I \tag{56}
\end{equation*}
$$

We note that if we write $m \psi$ in the first factor of (48) as $m \psi=Y \psi^{\prime}$, then $0 \leqslant \psi^{\prime} \leqslant 2 \pi$.

Our results for \mathbf{I} and \mathbf{I}^{2} coincide with results familiar in the quantum theory of angular momentum [16, p 64]. We have derived them here in the $C P^{2}$ context from first principles using Noether's theorem. Since I_{3} and Y do not in general in the $S U(3)$ context bear the same relation to isospin, the appearance of Y as a label of a Wigner D-function is not something that might have been seen to be obvious a priori. In fact it will be seen to be closely related to the fact that only irreps (λ, λ) enter the analysis of $C P^{2}$. Further I_{3} and Y do not feature on a similar footing in the analysis as a whole: some Y-dependence survives in (50) and is indeed essential to our discussion of the (I, Y) structure of the irreps (λ, λ) found in the Hilbert space of the $C P^{2}$ model.

We note also that (56) implies that only integral eigenvalues of Y enter our analysis for I either integral or half an odd integer, which already indicates that only irreps of $S U(3)$ of triality zero (i.e. irreps (λ, μ) such that $\lambda-\mu=0 \bmod 3$) are present. The fact that $\mathcal{C}^{(3)}=0$ implies that the qualifier mod 3 should be dropped.

5. Solution of the radial equation

We now turn to the solution of the radial equation in the form (50) that arose by writing the radial coordinate r of (41) as $r=\tan \chi$. Using also (56) we have

$$
\begin{equation*}
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} \chi^{2}}+(3 \cot \chi-\tan \chi) \frac{\mathrm{d}}{\mathrm{~d} \chi}-\frac{Y^{2}}{\cos ^{2} \chi}-\frac{4 I(I+1)}{\sin ^{2} \chi}\right] T_{I Y}=-E T_{I Y} . \tag{57}
\end{equation*}
$$

We solve this equation from first principles in this section, and relate the solutions to Jacobi polynomials in section 8 . The direct method is followed because it has the advantage that it allows the $S U(3)$ structure of the energy eigenspaces to be seen most clearly.

In discussing (57) we note Y appears only via Y^{2}, so that for most purposes we may regard it as positive or zero. It might be thought preferable to write $|Y|$ throughout the discussion. Changing the dependent variable by means of

$$
\begin{equation*}
T_{I Y}=\sin ^{2 I} \chi \cos ^{Y} \chi R_{I Y} \tag{58}
\end{equation*}
$$

converts (57) into the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} R}{\mathrm{~d} \chi^{2}}+[(4 I+3) \cot \chi-(2 Y+1) \tan \chi] \frac{\mathrm{d} R}{\mathrm{~d} \chi}+W R=0 \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
W=E-(2 I+Y)(2 I+Y+4) \tag{60}
\end{equation*}
$$

The change T to R of variables was designed to eliminate terms with $\cos ^{2} \chi$ or $\sin ^{2} \chi$ in their denominators. It has the further effect that (59) has as its solutions polynomials in $\cos ^{2} \chi$

$$
\begin{equation*}
R_{n I Y}=\sum_{r=0}^{n} a_{r} \cos ^{2 r} \chi \tag{61}
\end{equation*}
$$

Until one wishes to attend to questions of normalization, we may set $a_{0}=1$. One easily finds that (60) yields a solution of (58) for

$$
\begin{equation*}
\frac{a_{r+1}}{a_{r}}=\frac{4 r(r+2 I+Y+2)-W_{n}}{4(r+1)(Y+r+1)} \quad r=0,1,2, \ldots . \tag{62}
\end{equation*}
$$

We have written $W=W_{n}$ for the eigenvalue W that appears in (42) when its solution is a polynomial of degree n in $\cos ^{2} \chi$, and $R_{n I Y}$ terminates at the a_{n} term. This occurs when (62) implies $a_{n+1}=0$, i.e. when

$$
\begin{equation*}
W_{n}=4 n(n+2 I+Y+2) . \tag{63}
\end{equation*}
$$

The corresponding eigenvalue E_{n} in (57) then is

$$
\begin{equation*}
E_{n}=(2 I+Y+2 n)(2 I+Y+2 n+4) \tag{64}
\end{equation*}
$$

We now define an integer λ via

$$
\begin{equation*}
2 \lambda=2 I+Y+2 n \tag{65}
\end{equation*}
$$

This is motivated by the fact that E_{n} depends on n only through λ, being given by the formula

$$
\begin{equation*}
E=4 \lambda(\lambda+2) \tag{66}
\end{equation*}
$$

From (19) we see that this is proportional to the eigenvalue for (λ, λ) of the quadratic Casimir operator of $S U(3)$. Since we related our Hamiltonian explicitly to this Casimir operator, this is as expected. In fact, the result is a known one; it goes back to [14], where the spectrum of all $C P^{N}$ models and the irreps of $S U(N+1)$ which constitute the energy eigenspaces were found. What is thought to be new here is the full solution of the Schrödinger equation for $C P^{2}$, and the elucidation of how the (I, Y) structure of the relevant $S U(3)$ irreps emerges in a context in which the $S U(3)$ invariance is realized nonlinearly.

6. $S U(3)$ multiplet structure

For given integer λ the basis states

$$
\begin{equation*}
\left|\lambda ; I I_{3} Y\right\rangle \tag{67}
\end{equation*}
$$

have wavefunctions

$$
\begin{equation*}
\Psi_{\lambda n I Y}=k_{n} T_{n I Y}(\chi) \exp (\mathrm{i} m \psi) d_{m I_{3}}^{I}(\beta) \exp \left(\mathrm{i}_{3} \phi\right) \quad m=\frac{1}{2} Y \tag{68}
\end{equation*}
$$

where k_{n} is a normalization constant, and

$$
\begin{equation*}
T_{n I Y}(\chi)=\sin ^{2 I} \chi \cos ^{2 Y} \chi R_{n I Y}(\cos \chi) \tag{69}
\end{equation*}
$$

Orthogonality of wavefunctions with respect to their labels I, I_{3}, Y is assured by the properties of the Wigner D-functions, so that the 'radial' functions need only satisfy

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{4 I+3} \chi \cos ^{2 Y+1} \chi R_{n_{1} I Y} R_{n_{2} I Y} \mathrm{~d} \chi=0 \quad \text { for } \quad n_{1} \neq n_{2} \tag{70}
\end{equation*}
$$

The wavefunction $\Psi_{\lambda n I Y}$ has energy

$$
\begin{equation*}
E_{\lambda}=4 \lambda(\lambda+2) \quad \lambda=I+\frac{1}{2} Y+n . \tag{71}
\end{equation*}
$$

Thus we have degenerate sets of states of the same energy E_{λ} for

$$
\begin{equation*}
0 \leqslant I+\frac{1}{2} Y \leqslant \lambda \tag{72}
\end{equation*}
$$

exactly as (21) requires for (λ, λ). In fact all (I, Y) pairs, and indeed, from what has been said before, all $(I,-Y)$ compatible with (72) occur. The corresponding factor $R_{N I Y}$ of $\Psi_{\lambda n I Y}$ then is a polynomial of degree $n=\lambda-\left(I+\frac{1}{2} Y\right)$. We now give some explicit expressions for radial wavefunctions.

For $\lambda=0$, the singlet or scalar irrep, we have only $R_{000}=1$. For $\lambda=1$, the octet irrep of dimension 8 , we have

$$
\begin{align*}
& T_{010}(\chi)=\sin ^{2} \chi R_{010}(\cos \chi)=\sin ^{2} \chi \\
& T_{0 \frac{1}{2} 1}(\chi)=\sin \chi \cos \chi R_{0 \frac{1}{2} 1}(\cos \chi)=\sin \chi \cos \chi \tag{73}\\
& T_{100}(\chi)=R_{100}=1-3 \cos ^{2} \chi
\end{align*}
$$

accounting for $3+2 \times 2+1=8$ states.

For $\lambda=2$ and the irrep $(2,2)$ of dimension 27, we have

$$
\begin{align*}
& T_{020}(\chi)=\sin ^{4} \chi R_{020}(\cos \chi)=\sin ^{4} \chi \\
& T_{0 \frac{3}{2} 1}(\chi)=\sin ^{3} \chi \cos \chi R_{0 \frac{3}{2} 1}(\cos \chi)=\sin ^{3} \chi \cos \chi \\
& T_{012}(\chi)=\sin ^{2} \chi \cos ^{2} \chi R_{012}(\cos \chi)=\sin ^{2} \chi \cos ^{2} \chi \\
& T_{110}(\chi)=\sin ^{2} \chi R_{110}(\cos \chi)=\sin ^{2} \chi\left(1-5 \cos ^{2} \chi\right) \tag{74}\\
& T_{1 \frac{1}{2} 1}(\chi)=\sin \chi \cos \chi R_{1 \frac{1}{2} 1}(\cos \chi)=\sin \chi \cos \chi\left(1-\frac{5}{2} \cos ^{2} \chi\right) \\
& T_{200}(\chi)=R_{200}=1-8 \cos ^{2} \chi+10 \cos ^{4} \chi .
\end{align*}
$$

This accounts for all $5+2 \times 4+2 \times 3+3+2 \times 2+1=27$ states.
In addition, we note some more general results
$R_{1 I Y}=1-\frac{2 I+Y+3}{Y+1} \cos ^{2} \chi$
$R_{2 I Y}=1-\frac{2(2 I+Y+4)}{Y+1} \cos ^{2} \chi+\left(\frac{2 I+Y+4}{Y+1}\right)\left(\frac{2 I+Y+5}{Y+2}\right) \cos ^{4} \chi$
and

$$
\begin{equation*}
R_{n I Y}=\frac{n!Y!}{(2 I+Y+n+1)!} \sum_{r=0}^{n} \frac{(2 I+Y+n+r+1)!}{(n-r)!r!(Y+r)!}(-)^{r} \cos ^{2 r} \chi \tag{77}
\end{equation*}
$$

Since integrals like that in (70) can be evaluated in terms of gamma functions, various checks on orthogonality can be performed.

7. Solution of the radial equation in terms of Jacobi polynomials

The Jacobi polynomial $P_{\alpha, \beta}^{n}(x)$ [24] satisfies the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}+[(\beta-\alpha)-(\alpha+\beta+2) x] y^{\prime}+\lambda_{n} y=0 \tag{78}
\end{equation*}
$$

where $\alpha, \beta>-1$, and $-1 \leqslant x \leqslant 1$. This equation can be given in self-adjoint form with weight function and eigenvalue parameter

$$
\begin{equation*}
w=(1-x)^{\alpha}(1+x)^{\beta} \quad \lambda_{n}=n(n+\alpha+\beta+1) . \tag{79}
\end{equation*}
$$

If we set

$$
\begin{equation*}
x=\cos 2 \chi \quad 0 \leqslant \chi \leqslant \pi / 2 \tag{80}
\end{equation*}
$$

then we may identify (78) with our previous radial-type equation (59) provided that we make the identifications

$$
\begin{equation*}
\alpha=(2 I+1) \quad \beta=Y \quad W=4 \lambda=4 n(n+2 I+Y+2) \tag{81}
\end{equation*}
$$

so that, to within a constant factor, fixed below

$$
\begin{equation*}
R_{I Y}=R_{n I Y}(\cos \chi)=P_{(2 I+1), Y}^{n}(\cos 2 \chi) . \tag{82}
\end{equation*}
$$

The orthogonality property (70) conforms exactly to this identification, as does the result (77). The latter is however somewhat easier to work with than the standard expansion [24]

$$
\begin{equation*}
P_{\alpha, \beta}^{n}(x)=2^{-n} \sum_{m=0}^{n}\binom{n+\alpha}{m}\binom{n+\beta}{n-m}(x-1)^{n-m}(1+x)^{m} . \tag{83}
\end{equation*}
$$

Expansion of the term in $\left.(x-1)^{n-m}=\left(-2 \sin ^{2} \chi\right)\right)^{n-m}$ in powers of $\cos ^{2} \chi$ followed by a summation over m is needed to make the connection

$$
\begin{equation*}
P_{(2 I+1), Y}^{n}(\cos 2 \chi)=(-)^{n}\binom{Y+n}{n} R_{n I Y}(\cos \chi) \tag{84}
\end{equation*}
$$

with (77).
Finally, we write the solutions of (2) in the form
$\Psi_{n I I_{3} Y}(\chi, \beta, \psi, \phi)=k_{n} \sin ^{2 I} \chi \cos ^{Y} \chi P_{(2 I+1), Y}^{n}(\cos 2 \chi) \mathrm{e}^{\mathrm{i} Y \psi / 2} d_{Y / 2 I_{3}}^{I}(\beta) \mathrm{e}^{\mathrm{i} I_{3} \phi}$
where k_{n} is a new normalization constant. Their orthogonality properties have been alluded to. Their completeness can be inferred from the known completeness properties of the Jacobi polynomials and the Wigner D or d-functions.

8. A general coset space result

Here we briefly draw attention to a general result that accounts for the fact that the eigenspaces of the Schrödinger equation of $C P^{2}$ are carrier spaces of the irreps (1) of $S U(3)$.

Let G be a compact Lie group. Let $\left\{T^{\alpha}(g)\right\}$, for α taking values in some index set A, denote a complete system of pairwise nonequivalent unitary irreps of G. Let $d_{\alpha}=\operatorname{dim} T^{\alpha}(g)$. Let $t_{i j}^{\alpha}, \alpha \in A, 1 \leqslant i, j \leqslant d_{\alpha}$, denote the matrix elements of the $T^{\alpha}(g)$. Then [15] the functions

$$
\begin{equation*}
\sqrt{d_{\alpha}} t_{i j}^{\alpha}(g) \quad \alpha \in A \quad 1 \leqslant i, j \leqslant d_{\alpha} \tag{86}
\end{equation*}
$$

form a complete orthonormal basis on G for a normalized measure $d g$ invariant on G. Hence any square integrable function on G can be decomposed into a series convergent in the mean of the form

$$
\begin{equation*}
f(g)=\sum_{\alpha \in A} \sum_{i, j}^{d_{\alpha}} c_{i j}^{\alpha} t_{i j}^{\alpha}(g) . \tag{87}
\end{equation*}
$$

For our purposes of this paper, the case of functions on a homogeneous space $\mathcal{M}=G / H$ of G is needed, that is functions on G that are constant on the left (or the right) cosets of $H \subset G$; we also need a few definitions. An irrep R of G is said [15] to be of class one, if its restriction to H contains the identity representation of H. If any class one irrep of G contains the identity of H exactly once, the subgroup H is termed [15] a massive subgroup of G. We now state the result we need [15]: if $f(g)$ is a function on compact G constant on the left cosets of its massive subgroup $H \subset G$, then only α of class one occurs in its expansion of type (87), and, furthermore, each class one irrep occurs exactly once.

In our work here, we have solved the Schrödinger equation (3) in terms of functions on \mathcal{M}, where $\mathcal{M}=C P^{2}, \quad G=S U(3)$ and $H=U(2)$ is indeed a massive subgroup of $S U(3)$. The irreps of $S U(3)$ of class one are given by (2). That the singlet state $I=Y=0$ of the $U(2)$ subgroup of isospin rotations and hypercharge transformations occurs once in each of the class one irreps of $S U(3)$ is shown in section 2.

Acknowledgment

The research reported here is supported in part by PPARC.

References

[1] D'Adda A, Vecchia P di and Lüscher M 1978 A $1 / N$ expandable series of non-linear σ-models with instantons Nucl. Phys. B 146 63-76
[2] Zakrzewski W 1989 Low Dimensional Sigma Models (Bristol: Hilger)
[3] Ioannidou T, Piette B and Zakrzewski W 1999 Spherically symmetric solutions of the $\operatorname{SU}(N)$ Skyrme model J. Math. Phys. 40 6223-33
[4] Grundland A M and Zakrzewski W 2003 On geometrical aspects of $C P^{N}$ harmonic maps J. Math. Phys. 44 813-22
[5] Foth P 2002 Bruhat-Poisson structure on $C P^{N}$ and integrable systems J. Math. Phys. $\mathbf{4 3} 3124-32$
[6] Gibbons G W and Pope C N $1978 C P^{2}$ as a gravitational instanton Commun. Math. Phys. 61 239-48
[7] Eguchi T and Freund P G O 1976 Quantum gravity and world topology Phys. Rev. Lett. 37 1251-4
[8] Trautman A 1977 Solutions of the Maxwell and Yang-Mills equations associated with the Hopf fibrings Int. J. Theor. Phys. 16 561-5
[9] Gibbons G W, Page D N and Pope C N 1990 Einstein metrics on S^{3}, R^{3} and R^{4} bundles Commun. Math. Phys. 127 529-53
[10] Cvetic M, Gibbons G W, Lu H and Pope C N 2001 Ricci flat metrics, harmonic forms and brane resolutions Preprint hep-th/0102011
Cvetic M, Gibbons G W, Lu H and Pope C N 2001 Cohomogeneity one manifolds of spin(7) and G_{2} holonomy Preprint hep-th/0108245
Cvetic M, Gibbons G W, Lu H and Pope C N 2002 Phys. Rev. D 65106004
Cvetic M, Gibbons G W, Lu H and Pope C N 2002 Bianchi IX self-dual Einstein manifolds Preprint hep-th/ 0206151
Cvetic M, Gibbons G W, Lu H and Pope C N 2002 Spin(7) holonomy spaces and M-theory Preprint hep-th/ 0206154
[11] Acharya B S, Figueroa-O'Farrill J M, Hull C H and Spence B 1998 Branes at conical singularities and holonomy Adv. Theor. Math. Phys. 2 1249-86
[12] Eguchi T, Gilkey P B and Hanson A J 1980 Gravitation, gauge theories and differential geometry Phys. Rep. 66 213-393
[13] Page D N 1978 Taub-NUT instanton with a horizon Phys. Lett. 78 235-8
[14] Berger M, Gauduchon P and Mazet E 1971 Le spectre d'une variété Riemannienne (Lecture Notes in Mathematics vol 194) (Berlin: Springer)
[15] Vilenkin N Ya 1998 Special Functions and the Theory of Group Representations (Providence, RI: American Mathemetical Society) (translated from the Russian edition of 1965)
[16] Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton: Princeton University Press)
[17] Cornwell J F 1984 Group Theory in Physics vol 2 (London: Academic)
[18] Hagen C R and Macfarlane A J 1964 Triality type and its generalizations in unitary symmetry J. Math. Phys. 5 1335-9
[19] Macfarlane A J 1979 The $S U(N+1) \sigma$-model or $C P^{N}$ model as a non-linear realisation of $S U(N+1)$ symmetry Nucl. Phys. B 152 145-52
[20] Macfarlane A J 1979 Generalisations of σ-models and $C P(N)$ models and instantons Phys. Lett. B 82 239-41
[21] Delduc F and Valent G 1984 Classical and quantum structure of the compact Kählerian sigma models Nucl. Phys. B 253 449-516
[22] Davis A C, Macfarlane A J, Popat P C and van Holten J W 1984 The quantum mechanics of the supersymmetric non-linear σ-model J. Phys. A: Math. Gen. 17 2945-54
[23] Lee T D 1981 Particle Physics and an Introduction to Field Theory (London: Harcourt Academic)
[24] Bateman Manuscript Project 1953 Higher Transcendental Functions vol 2 ed A Erdelyi et al (New York: McGraw-Hill)

