
Complete solution of the Schrödinger equation of the complex manifold CP2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 7049

(http://iopscience.iop.org/0305-4470/36/25/310)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/25
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 7049–7060 PII: S0305-4470(03)61834-2

Complete solution of the Schrödinger equation of the
complex manifold CP2

A J Macfarlane

Centre for Mathematical Sciences, DAMTP, Wilberforce Road, Cambridge CB3 0WA, UK

E-mail: a.j.macfarlane@damtp.cam.ac.uk

Received 4 April 2003
Published 12 June 2003
Online at stacks.iop.org/JPhysA/36/7049

Abstract
Passing from the CP2 Lagrangian in Kähler form, to the Hamiltonian in terms
of polar coordinates, this paper gives the complete set of solutions of the
corresponding Schrödinger equation in a manner that makes fully explicit the
SU(3) description of the energy eigenspaces. The solutions of the self-adjoint
equation for the radial coordinates are derived most easily directly but also
related to Jacobi polynomials.

PACS numbers: 03.65.Ge, 02.30.Ik, 02.40.Tt

1. Introduction

In this paper we give the complete set of solutions of the Schrödinger equation on the complex
Riemannian manifold CP2, and describe in detail how the energy eigenspaces carry the
irreducible representations (irreps),

(λ, λ) λ ∈ {0, 1, 2, . . .} (1)

in standard highest weight notation, of the nonlinearly realized SU(3) symmetry of the
manifold.

We believe this to be of interest in its own right, but also as seen against the background
of the enduring interest of CPN manifolds in a variety of areas of theoretical physics. We next
indicate briefly some aspects of this interest.

Two-dimensional CPN field theories [1] received attention as toy models that offer a view,
in a simpler context, of various aspects of Yang–Mills theories in four dimensions. They have
also been studied as examples of integrable systems both in the classical and quantum settings.
In addition, they are of relevance in relation to Skyrme models. Discussion of CPN models
in these contexts can be found in the book of Zakrzewski [2], which contains reference to
previous and related work. Interest in such matters is still strong as some recent references
indicate [3–5].
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In the CP2 case, it emerged some time ago that CP2 can be regarded as a gravitational
instanton [6] or alternatively as a gravitational plus electromagnetic instanton [7, 8]. The
continued relevance of CPN spaces to related studies of Einstein, Einstein Kähler and Einstein
Sasaki spaces can be seen in papers written over the years from the days of these early papers.
For example, note their widespread occurrence, especially for N = 1, 2, 3, within the papers
[9–11]. See also [12], which reviews related material, and many other things such as the
Kähler nature and Fubini–Study metric of CPN , and [13].

The classical dynamics or ordinary quantum mechanics of the CPN models can be regarded
as field theory in a (0 + 1)-dimensional spacetime. Their gravitational use belongs to this
context, as does the present paper. In particular, we wish to construct the full solution of the
Schrödinger equation

Hq� = E� (2)

of the quantum CP2 model. The spectrum of (2) for CP2 has been known [14] for a long
time, as has the specification (1) of which SU(3) representations feature in the corresponding
Hilbert space, and analogous results for all CPN . There are, further, general considerations
underlying such matters, which can be indicated, following the exposition in [15]; see
section 8 for a brief account. (I thank N S Manton for valuable conversations on this topic.)
However, there remains the construction of all the eigenstates. We address this problem here for
CP2, CP2 = SU(3)/U(2). Using notation for isospin and hypercharge—I, I3, Y—familiar
from the application of SU(3) to elementary particles, we seek a description of the eigenstates
of Hq which makes manifest the (I, Y ) submultiplet structure of the energy eigenspaces. That
this might turn out to be non-trivial can be inferred from the fact that the CP2 model involves
two complex field variables Ki, i = 1, 2, and their canonically conjugate momenta, and that
in it the SU(3) symmetry is realized nonlinearly. Setting out from a description of the CP2

model that reflects its Kähler structure, we introduce polar coordinates

(K̄1K1 + K̄2K2)
1/2 = r = tan χ ψ, β, φ (3)

and solve (2) by separation of variables. We do this in a fashion that places the eigenstates in
exact correspondence with SU(3) basis states of the type |(λ, λ)II3Y 〉. The isospin factors
of the wavefunctions in separated form turn out to be Wigner D-functions, familiar in the
quantum theory of angular momentum [16],

DI
mI3

(ψ, β, φ) m = 1
2Y (4)

despite the fact, clarified below, that hypercharge does not enter SU(3) on a footing similar to
I3. Finally, the solution of the radial equation, with independent variable changed according
to r = tan χ , is seen to be of self-adjoint Sturm–Liouville type. It is very easy to solve it
directly. The spectrum and the complete (I, Y ) structure of the energy eigenspaces emerge in
the process. The radial equation can however also be related explicitly to the equation satisfied
by the Jacobi polynomials Pn

(2I+1),Y (cos 2χ).

The paper begins by reviewing some facts about SU(3) and about the CP2 model as a
nonlinear realization of SU(3), obtaining explicit expressions for the generators of SU(3)

transformations: these are needed for proof that the quantum numbers that come out of the
separation procedure are exactly I2, I3 and Y. The paper then describes the passage from
the CP2 Lagrangian in Kähler form to the Hamitonian, shown to be essentially the Casimir
operator of SU(3), and hence to the Schrödinger equation, in terms of suitably defined polar
coordinates. The last three sections describe its solutions and their SU(3) properties.
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2. Review of facts about representations of SU (3)

The Hermitian generators Xi, i ∈ {1, . . . , 8}, of SU(3) satisfy

[Xi,Xj ] = ifijkXk (5)

where the structure constants are specified by reference to the defining representation def of
SU(3) for which Xi �→ 1

2λi , where the λi are a standard set of Gell–Mann matrices such that

[λi, λj ] = 2ifijkλk. (6)

The quadratic Casimir oprator of SU(3) is given by

C(2) = XiXi. (7)

In the adjoint representation ad Xi �→ Fi, (Fi)jk = −ifijk , this takes the form

(C(2))jk = fpqjfpqk = 3δjk. (8)

It is well known (for background, see, e.g., [17]) that the irreducible representations
(irreps) of SU(3) are classified in highest weight notation by two integers λ � 0, µ � 0. For
the irrep (λ, µ), we have

dim(λ, µ) = 1
2 (λ + 1)(µ + 1)(λ + µ + 2) (9)

C(2)(λ, µ) = 1
3 (λ2 + λµ + µ2 + 3λ + 3µ). (10)

For ad = (1, 1), (10) gives the eigenvalue 3, agreeing (8). Also the cubic Casimir operator,
for which we do not need an explicit definition, has eigenvalue proportional to

(λ − µ)(2λ + µ + 3)(λ + 2µ + 3) (11)

for (λ, µ).
It is convenient to use definitions of SU(3) generators in common use in particle physics:

operators I±, I3, Y,U±, V± which in def are given by

I3 �→ 1
2λ3

√
2I± = (λ1 ± iλ2) Y �→

√
3

2 λ8√
2V± = (λ4 ± iλ5)

√
2U± = (λ6 ± iλ7).

(12)

Also

I2 = I 2
3 + 1

2 (I+I− + I−I+). (13)

The states |(λ, µ); II3Y 〉 of any (λ, µ) can then be labelled by their eigenvalues I (I + 1),

I3, Y of the commuting set I2, I3, Y of operators. There is a well-known algorithm (see, e.g.,
[18] for a simple derivation) for calculating the allowed pairs (I, Y ) for states |(λ, µ); II3Y 〉
of (λ, µ): for each pair of integers f � 0, g � 0 such that

0 � f � λ 0 � g � µ (14)

there is exactly one allowed (I, Y ) pair given by

f = I + 1
2Y + 1

3 (λ − µ) g = I − 1
2Y − 1

3 (λ − µ) (15)

so that

I = 1
2 (f + g) Y = f − g + 2

3 (λ − µ). (16)

The case (I, Y ) = (0, 0), the U(2) singlet state, is of interest. Such a state occurs once in
(λ, µ) if λ = µ and not at all otherwise. For each allowed (I, Y ) pair there are (2I + 1) states
|(λ, µ); II3Y 〉 of (λ, µ) with

−I � I3 � I (17)

and it can be checked that (9) follows.
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Below, the subset of irrreps (λ, λ) is of major importance. For it, we have

dim(λ, λ) = (λ + 1)3 (18)

C(2)(λ, λ) = λ(λ + 2) (19)

C(3)(λ, λ) = 0. (20)

Further, if we take Y > 0, then with each allowed pair (I, Y ) the pair (I,−Y ) is also allowed.
Since all the allowed values of

(
I + 1

2Y
)

are integers given by

0 �
(
I + 1

2Y
)

� λ (21)

it is then enough to specify the full set of (I, Y ) values for (λ, λ).
Finally, we note that the quadratic Casimir operator of SU(3) is given by

C(2) = I2 + 3
4Y 2 + 1

2 (U+U− + U−U+ + V+V− + V−V+) (22)

= I3(I3 + 1) + 3
4Y (Y + 2) + I−I+ + U−U+ + V−V+. (23)

The latter form is convenient for finding the eigenvalues of C(2) by action on states of irreps
annihilated by the operators I+, U+, V+, these being the states of highest Y and the highest I3

for that value of Y.

3. Review of CP2 model

Following well-known lines dating back to the 1970s (see [19–21]), we set out from a three-
component column vector Z(K) dependent on two complex quantities Ki, i = 1, 2, and given
by

ZT = (LK1, LK2, L) L = L(K) = (1 + X)−1/2 X = (K̄1K1 + K̄2K2) (24)

so that ZT Z = 1. This Z(K) transforms under U ∈ SU(3) according to the law

Z(K) �→ Z(K ′) where UZ(K) = Z(K ′)V (U,K). (25)

Here V = V (U,K) serves to ensure that Z(K ′)3 = L(K ′) can be chosen to be real. We need
(25) first for infinitesimal

U = 1 +
1

2
i

(
3∑

a=1

εaλa + ηλ8

)
(26)

belonging to the SU(2) ⊗ U(1) subgroup corresponding to isospin and hypercharge
transformations, and second for

U = 1 +
1

2
i

(
7∑

α=4

εαλα

)
(27)

for those SU(3) transformations that lie outside the SU(2)⊗U(1) subgroup. It is well known
that the latter give rise to a nonlinear transformation of the K variables of the form

δKi = 1
2 i[εi − Ki(ε̄jKj )] (28)

where ε1 = ε4 − iε5, ε2 = ε6 − iε7.
The route from (25) to the CP2 Lagrangian is too well known to need review. It yields

the result

L = gik̄K̇ i
˙̄Kk (29)
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where the CP2 metric tensor is

gik̄ = (1 + X)−1δik − (1 + X)−2K̄iKk (30)

in its well-known Kähler form [12]. Proceeding classically at first, we define the canonical
momenta �i, �̄i , and obtain the Hamiltonian

H = gik̄�i�̄k = (1 + X)[�̄ · � + (� · K)(�̄ · K̄)]. (31)

Next we apply Noether’s theorem to (25). Using transformation data for the variables
Ki given above, we find expressions for the generators of the infinitesimal transformations of
SU(3) to be

iI3 = 1
2 (�τ3K − �̄τ3K̄) iY = � · K − �̄ · K̄

iI+ = �1K2 − �̄2K̄1 iI− = �2K1 − �̄1K̄2

iV+ = �1 + (�̄ · K̄)K̄1 −iV− = �̄1 + (� · K)K1

iU+ = �2 + (�̄ · K̄)K̄2 −iU− = �̄2 + (� · K)K2.

(32)

These obey the expected Poisson brackets. A direct calculation of the quadratic Casimir
operator sets out from (22) and reaches the expected result C(2) = H .

In our quantum mechanical work, we prefer to deal with real variables

K1 = K4 + iK5 K2 = K6 + iK7. (33)

Using Greek letters α, β etc for indices that take values in the range 4, 5, 6, 7, we find a result
of the form

L = gαβK̇αK̇β (34)

where gαβ can be calculated from (29) and (33), but, being only an intermediate quantity in
our work, is not displayed. Passing hence to the quantum mechanical Hamiltonian Hq poses
an operator ordering problem when Poisson brackets relations for the canonical variables
are replaced by commutation relations. One nice way to bypass these is to consider the
supersymmetric extension, see, e.g., [22], of the model involving two Hermitian supercharges.
Solving the operator order for these is trivial, since a simple symmetrization makes them
Hermitian. Then the standard definition of the Hamiltonian in terms of these supercharges
produces a correctly ordered Hamiltonian. Its non-fermionic part is then what we want [22],
namely

Hq = g−1/4�αg
1/2gαβ�βg−1/4 (35)

where g = det(gαβ). Next we recognize that the scalar product of states in the Hilbert space
in which Hq acts is given by

(φ,ψ) =
∫

g1/2φ̄(K)ψ(K)

7∏
α=4

dKα (36)

so that the Hermitian representation

�α = g−1/4(−i∂α)g
1/4 ∂α = ∂

∂Kα

(37)

should be used. This converts (35) into the form

Hq = −g−1/2∂αg1/2gαβ∂β (38)

which is, of course, a very familiar result. See [23, p 155].



7054 A J Macfarlane

3.1. Comment on the notation in use

The column vector Z given by (24) in a slightly extended formulation [19–21] of the CP2 model
appears as the third column of the CP2 = SU(3)/U(2) coset representative U(K) ∈ S(3)

U(K) =
(

J LK

−LK̄ L

)
. (39)

If we had elected to employ a coset representative that uses the exponential
parametrization, which of course we did not because of its intractibility, we would have
written

U(K) = exp i

(
7∑

α=4

λαKα

)
(40)

making the notation used thereby appear natural. The coset representative (39) actually used
differs from this only by some redefinition of its field variables.

4. Polar coordinates and separation of variables for CP2

We define polar coordinates, as in [6], for the CP2 model by setting

K4 = r cos 1
2βC+ K5 = −r cos 1

2βS+
(41)

K6 = r sin 1
2βC− K7 = r sin 1

2βS−

where C± = cos 1
2 (φ ± ψ), S± = sin 1

2 (φ ± ψ). The variable r is such that 0 � r < ∞, and
for the angular variables we have 0 � β � π, 0 � ψ � 4π, 0 � φ � 2π [6].

It is easy to write the Lagrangian, (29) and (30), in terms of the real variables Kα and
hence in terms of polar coordinates (41). We find, as in [6] or equivalently [7, 8],

L = 1

(1 + r2)2
ṙ2 +

r4

4(1 + r2)2
sin2 βφ̇2

+
r2

4(1 + r2)
β̇2 +

r2

4(1 + r2)2
[(ψ̇2 + 2 cos βψ̇φ̇ + φ̇)2]. (42)

We may read the metric tensor off (42) and hence evaluate the quantum Hamiltonian Hq of
(38). For the latter purpose it is convenient to define χ, 0 � χ < 1

2π via r = tanχ . First,
with coordinates r, β,ψ, φ, we note

g1/2 dr = sin3 χ cos χ sin β dχ. (43)

Next, writing (38) in terms of the polar coordinates of (41), we get

Hq = − 1

sin3 χ cos χ

∂

∂χ
sin3 χ cos χ

∂

∂χ
− 4

cos2 χ

∂2

∂ψ2

− 4

sin2 χ

[
1

sin β

∂

∂β
sin β

∂

∂β
+

1

sin2 β

(
∂2

∂φ2
− 2 cos β

∂

∂ψ

∂

∂φ
+

∂2

∂ψ2

)]
.

(44)

To solve the corresponding time-independent Schrödinger equation

Hq� = E� (45)

we separate variables using

� = T (χ)Dj
mµ(ψ, β, φ). (46)
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We do this on the basis of the quantum theory of angular momentum [16], or the representation
theory of SU(2), since the Wigner D-function of (46) obeys the equation

−
[

1

sin β

∂

∂β
sin β

∂

∂β
+

1

sin2 β

(
∂2

∂φ2
− 2 cos β

∂

∂ψ

∂

∂φ
+

∂2

∂ψ2

)]
Dj

mµ(ψ, β, φ)

= j (j + 1)Dj
mµ(ψ, β, φ). (47)

Upon writing

Dj
mµ(ψ, β, φ) = eimψdj

mµ(β) eiµφ (48)

a well-known equation for d
j
mµ(β) follows by letting −i∂/∂ψ and −i∂/∂φ act on the

corresponding exponential factors. It is to be stressed that (47) is valid for

j = 0, 1
2 , 1, 3

2 , . . . and −j � m µ � j. (49)

It further follows that T = Tjm(χ) obeys the equation[
1

sin3 χ cos χ

d

dχ
sin3 χ cos χ

d

dχ
− 4m2

cos2 χ
− 4j (j + 1)

sin2 χ

]
T = −ET. (50)

This equation is in self-adjoint form, with weight function sin3 χ cos χ . Thus, if T1 and T2 are
solutions of (50) belonging to distinct energy eigenvalues, their orthogonality relation is∫ π

0
sin3 χ cos χT1(χ)T2(χ) dχ = 0 (51)

just as (43) would lead one to expect, the factor sin β, cf (43), of g1/2 belonging to the
orthogonality relation of the Wigner D-functions.

We obtain the solutions of (48) in the next section. To interpret these in relation to the
SU(3) structure of the spectrum of Hq , we need to identify the complete commuting set of
operators which enter our method of separation of variables, and establish their connection to
the labelling of states of the Hilbert space in which Hq acts. Towards this end, we return to
(32), and use (33), (37) and (41) to write I3, Y, I± in terms of χ, β,ψ, φ and the corresponding
partial derivatives. The g1/4 factors in (37) do not contribute in this process and no order of
operators problem arises, and eventually one finds

I3 = −i
∂

∂φ
Y = −2i

∂

∂ψ
(52)

iI1 = −sin φ
∂

∂β
+

cos φ

sin β

(
∂

∂ψ
− cos β

∂

∂φ

)
(53)

iI2 = cos φ
∂

∂β
+

sin φ

sin β

(
∂

∂ψ
− cos β

∂

∂φ

)
. (54)

Further, we find

I2 = −
[

1

sin β

∂

∂β
sin β

∂

∂β
+

1

sin2 β

(
∂2

∂φ2
− 2 cos β

∂

∂ψ

∂

∂φ
+

∂2

∂ψ2

)]
. (55)

Thus we can identify the operator that appears in (47) with the square of the isospin operator
(the Casimir operator of the SU(2) subgroup of SU(3)). It thus follows that we may rename
constants appearing in (46)–(50) according to

m = 1
2Y µ = I3 j = I. (56)

We note that if we write mψ in the first factor of (48) as mψ = Yψ ′, then 0 � ψ ′ � 2π .
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Our results for I and I2 coincide with results familiar in the quantum theory of angular
momentum [16, p 64]. We have derived them here in the CP2 context from first principles
using Noether’s theorem. Since I3 and Y do not in general in the SU(3) context bear the same
relation to isospin, the appearance of Y as a label of a Wigner D-function is not something
that might have been seen to be obvious a priori. In fact it will be seen to be closely related to
the fact that only irreps (λ, λ) enter the analysis of CP2. Further I3 and Y do not feature on a
similar footing in the analysis as a whole: some Y-dependence survives in (50) and is indeed
essential to our discussion of the (I, Y ) structure of the irreps (λ, λ) found in the Hilbert space
of the CP2 model.

We note also that (56) implies that only integral eigenvalues of Y enter our analysis for
I either integral or half an odd integer, which already indicates that only irreps of SU(3) of
triality zero (i.e. irreps (λ, µ) such that λ − µ = 0 mod 3) are present. The fact that C(3) = 0
implies that the qualifier mod 3 should be dropped.

5. Solution of the radial equation

We now turn to the solution of the radial equation in the form (50) that arose by writing the
radial coordinate r of (41) as r = tan χ . Using also (56) we have[

d2

dχ2
+ (3 cot χ − tan χ)

d

dχ
− Y 2

cos2 χ
− 4I (I + 1)

sin2 χ

]
TIY = −ETIY . (57)

We solve this equation from first principles in this section, and relate the solutions to Jacobi
polynomials in section 8. The direct method is followed because it has the advantage that it
allows the SU(3) structure of the energy eigenspaces to be seen most clearly.

In discussing (57) we note Y appears only via Y 2, so that for most purposes we may regard
it as positive or zero. It might be thought preferable to write |Y | throughout the discussion.
Changing the dependent variable by means of

TIY = sin2I χ cosY χRIY (58)

converts (57) into the form

d2R

dχ2
+ [(4I + 3) cotχ − (2Y + 1) tan χ]

dR

dχ
+ WR = 0 (59)

where

W = E − (2I + Y )(2I + Y + 4). (60)

The change T to R of variables was designed to eliminate terms with cos2 χ or sin2 χ in their
denominators. It has the further effect that (59) has as its solutions polynomials in cos2 χ

RnIY =
n∑

r=0

ar cos2r χ. (61)

Until one wishes to attend to questions of normalization, we may set a0 = 1. One easily finds
that (60) yields a solution of (58) for

ar+1

ar

= 4r(r + 2I + Y + 2) − Wn

4(r + 1)(Y + r + 1)
r = 0, 1, 2, . . . . (62)

We have written W = Wn for the eigenvalue W that appears in (42) when its solution is a
polynomial of degree n in cos2 χ , and RnIY terminates at the an term. This occurs when (62)
implies an+1 = 0, i.e. when

Wn = 4n(n + 2I + Y + 2). (63)
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The corresponding eigenvalue En in (57) then is

En = (2I + Y + 2n)(2I + Y + 2n + 4). (64)

We now define an integer λ via

2λ = 2I + Y + 2n. (65)

This is motivated by the fact that En depends on n only through λ, being given by the formula

E = 4λ(λ + 2). (66)

From (19) we see that this is proportional to the eigenvalue for (λ, λ) of the quadratic Casimir
operator of SU(3). Since we related our Hamiltonian explicitly to this Casimir operator, this
is as expected. In fact, the result is a known one; it goes back to [14], where the spectrum of
all CPN models and the irreps of SU(N + 1) which constitute the energy eigenspaces were
found. What is thought to be new here is the full solution of the Schrödinger equation for
CP2, and the elucidation of how the (I, Y ) structure of the relevant SU(3) irreps emerges in a
context in which the SU(3) invariance is realized nonlinearly.

6. SU (3) multiplet structure

For given integer λ the basis states

|λ; II3Y 〉 (67)

have wavefunctions

�λnIY = knTnIY (χ) exp(imψ)dI
mI3

(β) exp(iI3φ) m = 1
2Y (68)

where kn is a normalization constant, and

TnIY (χ) = sin2I χ cos2Y χRnIY (cos χ). (69)

Orthogonality of wavefunctions with respect to their labels I, I3, Y is assured by the properties
of the Wigner D-functions, so that the ‘radial’ functions need only satisfy∫ π/2

0
sin4I+3 χ cos2Y+1 χRn1IY Rn2IY dχ = 0 for n1 	= n2. (70)

The wavefunction �λnIY has energy

Eλ = 4λ(λ + 2) λ = I + 1
2Y + n. (71)

Thus we have degenerate sets of states of the same energy Eλ for

0 � I + 1
2Y � λ (72)

exactly as (21) requires for (λ, λ). In fact all (I, Y ) pairs, and indeed, from what has been
said before, all (I,−Y ) compatible with (72) occur. The corresponding factor RNIY of �λnIY

then is a polynomial of degree n = λ − (
I + 1

2Y
)
. We now give some explicit expressions for

radial wavefunctions.
For λ = 0, the singlet or scalar irrep, we have only R000 = 1. For λ = 1, the octet irrep

of dimension 8, we have

T0 1 0(χ) = sin2 χR0 1 0(cos χ) = sin2 χ

T0 1
2 1(χ) = sin χ cos χR0 1

2 1(cos χ) = sin χ cos χ

T1 0 0(χ) = R1 0 0 = 1 − 3 cos2 χ

(73)

accounting for 3 + 2 × 2 + 1 = 8 states.
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For λ = 2 and the irrep (2, 2) of dimension 27, we have

T0 2 0(χ) = sin4 χR0 2 0(cos χ) = sin4 χ

T0 3
2 1(χ) = sin3 χ cos χR0 3

2 1(cos χ) = sin3 χ cos χ

T0 1 2(χ) = sin2 χ cos2 χR0 1 2(cos χ) = sin2 χ cos2 χ

T1 1 0(χ) = sin2 χR1 1 0(cos χ) = sin2 χ(1 − 5 cos2 χ)

T1 1
2 1(χ) = sin χ cos χR1 1

2 1(cos χ) = sin χ cos χ
(
1 − 5

2 cos2 χ
)

T2 0 0(χ) = R2 0 0 = 1 − 8 cos2 χ + 10 cos4 χ.

(74)

This accounts for all 5 + 2 × 4 + 2 × 3 + 3 + 2 × 2 + 1 = 27 states.
In addition, we note some more general results

R1IY = 1 − 2I + Y + 3

Y + 1
cos2 χ (75)

R2IY = 1 − 2(2I + Y + 4)

Y + 1
cos2 χ +

(
2I + Y + 4

Y + 1

) (
2I + Y + 5

Y + 2

)
cos4 χ (76)

and

RnIY = n!Y !

(2I + Y + n + 1)!

n∑
r=0

(2I + Y + n + r + 1)!

(n − r)!r!(Y + r)!
(−)r cos2r χ. (77)

Since integrals like that in (70) can be evaluated in terms of gamma functions, various
checks on orthogonality can be performed.

7. Solution of the radial equation in terms of Jacobi polynomials

The Jacobi polynomial Pn
α,β(x) [24] satisfies the differential equation

(1 − x2)y ′′ + [(β − α) − (α + β + 2)x]y ′ + λny = 0 (78)

where α, β > −1, and −1 � x � 1. This equation can be given in self-adjoint form with
weight function and eigenvalue parameter

w = (1 − x)α(1 + x)β λn = n(n + α + β + 1). (79)

If we set

x = cos 2χ 0 � χ � π/2 (80)

then we may identify (78) with our previous radial-type equation (59) provided that we make
the identifications

α = (2I + 1) β = Y W = 4λ = 4n(n + 2I + Y + 2) (81)

so that, to within a constant factor, fixed below

RIY = RnIY (cos χ) = Pn
(2I+1),Y (cos 2χ). (82)

The orthogonality property (70) conforms exactly to this identification, as does the result
(77). The latter is however somewhat easier to work with than the standard expansion [24]

Pn
α,β(x) = 2−n

n∑
m=0

(
n + α

m

)(
n + β

n − m

)
(x − 1)n−m(1 + x)m. (83)
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Expansion of the term in (x − 1)n−m = (−2 sin2 χ))n−m in powers of cos2 χ followed by a
summation over m is needed to make the connection

Pn
(2I+1),Y (cos 2χ) = (−)n

(
Y + n

n

)
RnIY (cos χ) (84)

with (77).
Finally, we write the solutions of (2) in the form

�nII3Y (χ, β,ψ, φ) = kn sin2I χ cosY χPn
(2I+1),Y (cos 2χ) eiYψ/2dI

Y/2I3
(β) eiI3φ (85)

where kn is a new normalization constant. Their orthogonality properties have been alluded
to. Their completeness can be inferred from the known completeness properties of the Jacobi
polynomials and the Wigner D or d-functions.

8. A general coset space result

Here we briefly draw attention to a general result that accounts for the fact that the eigenspaces
of the Schrödinger equation of CP2 are carrier spaces of the irreps (1) of SU(3).

Let G be a compact Lie group. Let {T α(g)}, for α taking values in some index set A,
denote a complete system of pairwise nonequivalent unitary irreps of G. Let dα = dim T α(g).
Let tαij , α ∈ A, 1 � i, j � dα, denote the matrix elements of the T α(g). Then [15] the
functions √

dα tαij (g) α ∈ A 1 � i, j � dα (86)

form a complete orthonormal basis on G for a normalized measure dg invariant on G. Hence
any square integrable function on G can be decomposed into a series convergent in the mean
of the form

f (g) =
∑
α∈A

dα∑
i,j

cα
ij t

α
ij (g). (87)

For our purposes of this paper, the case of functions on a homogeneous space M = G/H

of G is needed, that is functions on G that are constant on the left (or the right) cosets of
H ⊂ G; we also need a few definitions. An irrep R of G is said [15] to be of class one, if its
restriction to H contains the identity representation of H. If any class one irrep of G contains
the identity of H exactly once, the subgroup H is termed [15] a massive subgroup of G. We
now state the result we need [15]: if f (g) is a function on compact G constant on the left
cosets of its massive subgroup H ⊂ G, then only α of class one occurs in its expansion of
type (87), and, furthermore, each class one irrep occurs exactly once.

In our work here, we have solved the Schrödinger equation (3) in terms of functions on
M, where M = CP2, G = SU(3) and H = U(2) is indeed a massive subgroup of SU(3).
The irreps of SU(3) of class one are given by (2). That the singlet state I = Y = 0 of the
U(2) subgroup of isospin rotations and hypercharge transformations occurs once in each of
the class one irreps of SU(3) is shown in section 2.
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